
Problem Set 11 - 7.2, 7.5, 7.9, 7.10, 7.13, 7.16
7.2a. In order to see what order our reaction is, we will compare the data at hand to reaction mechanisms
(rate equations) that we know. Since we have half life data, we want to compare to that. For first order
reactions, (you can see how this equation is derived in problem 7.10a)

ln
( 1

2c0

c0

)
= −kt1/2

t1/2 =
ln2
k

This tells us that the half life for first order reactions is independent of concentration, which clearly isn’t the
case for the data at hand. What about a second order reactions?

1
1
2c0
− 1
c0

= kt1/2

t1/2 =
1
kc0
∝ c0−1

In other words, doubling the initial concentration halves the half-life. Since this is what we observe, it is a
plausible hypothesis for the mechanism.
b. Using the half-life equation for a second order reaction that we derived above,

t1/2 =
1
kc0
→ k =

1
c0t1/2

=
1

(0.0050 M)(2000 s)
= 0.1 M−1 s−1

You get the same answer if you use the other trial, where c0 = 0.0100 M and t1/2 = 1000 s.
c. We derived the integrated rate equation in (a) for a second order reaction, and the value for the rate
constant k = 0.1 M−1 s−1 that we derived in (b). For the case of c0 = 0.0100 M,

t =
1
k

(
1
c
− 1
c0

)
=

1
0.1 M−1 s−1

(
1

0.0025 M
− 1

0.01000 M

)
= 3000 s

We could do the same thing for the case of c0 = 0.0050 M, but we don’t have to, as the answer is already
given to us. Half of 0.0050 M is 0.0025 M, and we are told that the half life is 2000 s.
d. Since this is a second order reaction, the most obvious mechanisms are:

−d [OH−]
dt

= k
[
OH−

]
[CH3COOC2H5]

or

−d [OH−]
dt

= k
[
OH−

]2
or

−d [OH−]
dt

= k[CH3COOC2H5]2

or even something like

−d [OH−]
dt

= k
[
OH−

]2sin2θ[CH3COOC2H5]2cos2θ ; 0 ≤ θ ≤ 2π

e. The way to do this is by varying the concentration of one reactant without changing the other (and you
might also consider setting the concentration of the fixed reactant very high so that it is effectively constant).
You will do something like this in problem 7.5.
7.5a. The initial rate is ν0 = k[A]a[B]b. If doubling the initial concentration of A quadruples the initial
rate, then the reaction must be second order with respect to [A] (i.e., a = 2).
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b. Likewise, if doubling the initial concentration of B does nothing to the rate, then the reaction must be
zeroth order with respect to [B] (i.e., b = 0).
c. From parts a and b, the rate expression must be

d[C]
dt

= k[A]2

d. From c, we know that the rate of the reaction is ν = k[A]2. To find the rate constant, k, we merely
rearrange and substitute in the data in the table, i.e.,

k =
ν

[A]2
=

1.0× 10−3 M s−1

(1.0 M)2 = 1.0× 10−3 M−1 s−1

e. We know from the rate expression that two A molecules have to interact. Furthermore, since the reaction
is zeroth order with respect to B, the reaction of with the B molecule must take essentially no time at all
compared to the intial reaction of the two A’s. One possible mechanism would be A + A → A∗2 (A collides
with another A to form an activated complex) which must be a slow step, because, for example, there is
a high barrier for the reaction so few molecules have enough kinetic energy at a given temperature to get
over it. Then A∗2 + B → C + D + A, occurs quickly, and the extra A molecule from the activated complex
is returned so that the stoichiometric equation (A + B → C + D) is obeyed. Of course the actual reaction
might be more complicated than this, but Occam’s razor is not just for shaving with.
7.9a We are asked to consider the reaction 2CGTGAATTCGCC ⇀↽ Duplex, and given a set of kinetic data
on the forward and backward rates k1 and k−1, respectively. To find the activation energy, Ea, consider the
Arrhenius equation,

k = AExp [−Ea/RT]

Since we don’t know (or need to know) the value of A, the easiest thing to do is form a ratio that will cancel
it out:

ln
k2

k1
= ln

(
AExp [−Ea/RT2]
AExp [−Ea/RT1]

)
= − Ea

RT2
+

Ea
RT1

=
Ea
R

(
1
T1
− 1
T2

)
Ea = R

(
1
T1
− 1
T2

)−1

ln
k2

k1

where ki is the rate constant at temperature Ti. I’ve massaged it into this form, because I’ll just have a
spreadsheet program calculate Ea from successive data points. If you’re doing this without a spreadsheet,
you can graph lnk versus 1/T and find the slope of the line, either through inspection, or with a linear
regression.
To calculate ∆H‡ and ∆S‡, we need to consider Eyring’s transition state theory equation,

k =
kBT

h
Exp

[
−∆G‡/RT

]
ln
(
kh

kBT

)
= −∆G‡

RT

∆G‡ = −RT ln
(
kh

kBT

)
That’s great, but we want to calculate ∆H‡ and ∆S‡. One way to do this would be to plot ∆G‡ versus T .
The slope will be −∆S‡, and the intercept will be ∆H‡. But graphing is tedious! Instead,

∆G‡1 −∆G‡2 =
(

∆H‡ − T1∆S‡
)
−
(

∆H‡ − T2∆S‡
)

= (T2 − T1) ∆S‡

(Where we have made the implicit assumption that ∆H‡ and ∆S‡ are independent of temperature.) Then,

∆S‡ = −∆G‡2 −∆G‡1
T2 − T1
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and then
∆H‡ = ∆G‡ + T∆S‡

I calculated these using a spreadsheet, and have tabulated them below

T/◦C T/K k1 Ea/( kJ/mol) ∆G‡/( kJ/mol) ∆S‡/( J/mol K) ∆H‡/( kJ/mol)
31.8 304.8 0.80 110 75.3 104 107
36.8 309.8 2.3 166 73.8 289 163
41.8 314.8 3.5 68.1 74.0 -26.9 65.5
46.7 319.7 6.0 92.1 73.7 49.1 89.4

Average: 109 74.2 104 106

T/◦C T/K k−1 Ea/( kJ/mol) ∆G‡/( kJ/mol) ∆S‡/( J/mol K) ∆H‡/( kJ/mol)
31.8 304.8 1.00 243 74.7 543 240
36.8 309.8 3.20 183 73.0 346 180
41.8 314.8 15.4 254 70.1 579 252
46.7 319.7 87.0 296 66.6 708 293

Average: 244 71.1 544 241

b. The difference between the backwards and forwards reaction ∆H‡ and ∆S‡ should determine the overall
∆H◦ and ∆S◦, i.e., ∆H◦ = ∆H‡rev −∆H‡fwd and ∆S◦ = ∆S‡rev −∆S‡fwd. They are tabulated below
in kJ/mol for ∆H‡ and J/mol K for ∆S‡.

∆H‡fwd ∆H‡rev ∆H◦

107 240 -133
163 180 -16.8
65.5 252 -187
89.4 293 -204

Average: -135

∆S‡fwd ∆S‡rev ∆S◦

104 543 -439
289 346 -57
-26.9 579 -605
49.1 708 -659

Average: -440

c. Forming an extra Watson-Crick base pair will stabilize the product, that is, make the activation energy
for the reverse reaction larger (and do nothing to Ea for the forward reaction). You can derive from,

Ea = RT 2 ∂ lnk
∂T

and
k =

kBT

h
Exp

[
−(∆H‡ − T∆S‡)/RT

]
that (I won’t show it here, but it’s pretty easy to do on your own, as an exercise for the reader)

Ea = ∆H‡ +RT

In other words, increasing Ea for the reverse reaction will make ∆H‡ for the reaction increase as well.
7.10 For the reaction A + B → C, we are told that after 1 hour, 90% of A is reacted, i.e., that [A]1hr =
0.10[A]0. Having established this, we proceed with the problem.
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a. For first order in A and zeroth order in B,

−d[A]
dt

= k[A]

∫
d[A]
[A]

= −k
∫

dt = ln
(

[A]
[A]0

)
= −kt

−
ln
(

0.10[A]0
[A]0

)
1 hr

= k = 2.3 hr−1

Using this value for k, we can return to our original integrated rate expression, and we see that after t = 2 hr,

[A]
[A]0

= Exp [−kt] = Exp
[
(2.3 hr−1)(2 hr)

]
= 0.01

Therefore 1% is unreacted at the end of 2 hours.
b. For a reaction first order in both A and B,

−d[A]
dt

= k[A][B]

However, we are told that the reactants are present in the same concentration (equal volumes of equimolar
solutions), so our equation simplifies to:

−d[A]
dt

= k[A]2

Integrating,

−
∫

d[A]
[A]2

=
∫
kdt =

1
[A]
− 1

[A]0
= kt

k =
1
t

(
1

[A]
− 1

[A]0

)
=

1
(1 hr)

(
1

0.1[A]0
− 1

[A]0

)
= 9 hr−1[A]0

−1

And, as in part a, using this value of k and our integrated rate equation, we find

1
[A]

= kt+
1

[A]0

[A] =
(
kt+

1
[A]0

)−1

=
(

(9 hr−1[A]0
−1)(2 hr) +

1
[A]0

)−1

= 0.053[A]0

So 5.3% of the A is remaining at the end of 2 hr.
c. Again, same procedure, just a different equation to integrate. The reaction is zeroth order in A and B, so

−d[A]
dt

= k →
∫

d[A] = −k
∫

dt = [A]− [A]0 = −kt

Rearranging for the rate constant,

k = −
(

[A]− [A]0
t

)
= −

(
0.10[A]0 − [A]0

1 hr

)
= 0.9[A]0 hr−1

Then rearranging our integrated rate equation,

[A] = [A]0 − kt = [A]0 − (0.9[A]0 hr−1)(2 hr) = −0.8[A]0
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But this is impossible, as “negative concentration” is unphysical. So the conclusion is that either we ran out
of reactants at around 1.1 hr (and so the reaction stopped before we could get to the 2 hr mark) or else the
kinetics changed in the limit of low concentration.
d. For the case of a mechanism first order in A and half-order in B,

−d[A]
dt

= k[A][B]1/2 = k[A]3/2

by the same argument that we made in part b. Integrating this equation (do you sense a pattern here?),

−
∫

d[A]

[A]3/2
=
∫
kdt = 2

(
1

[A]1/2
− 1

[A]0
1/2

)
= kt

Solving for the rate constant,

k =
2
t

(
1

[A]1/2
− 1

[A]0
1/2

)
=

2
(1 hr)

(
1

(0.1[A]0)1/2
− 1

[A]0
1/2

)
= 4.3 hr−1[A]0

−1/2

And (finally) solving for [A] at t = 2 hr,

[A]1/2 =

(
kt

2
+

1

[A]0
1/2

)−1

[A] =

(
kt

2
+

1

[A]0
1/2

)−2

=

(
(4.3 hr−1[A]0

−1/2)(2 hr)
2

+
1

[A]0
1/2

)−2

= 0.036

So about 3.6% is remaining after two hours.
7.13 We are told that the half life of 3

1H is t1/2 = 12.5 yr, and that the reaction is first order in 3
1H only. The

rate equation is,

−d[31H]
dt

= k[31H]

Which is integrated to, ∫
d[31H]
[31H]

= −k
∫

dt = ln
(

[31H]
[31H]0

)
= −kt

Solving for k using the half life data,

k =
ln
(

[31H]

[31H]0

)
t1/2

=
ln2

12.5 yr
= 0.0555 yr−1

Using this value in our integrated rate equation,

t = −
ln
(

[31H]

[31H]0

)
k

= −
ln
(

0.20[31H]0
[31H]0

)
0.0555 yr−1

= 29.0 yr

(The astute reader will seee that this problem is exactly the same as 7.10a.) So the question now becomes:
Was (2001− 29) = 1972 a good year? But since this is not a oenology class, we won’t answer that question.
As an exercise to the reader, you might try the inverse problem: try finding the amount of 3

1H left in wine
that was bottle the year you were born.
7.16a. We are told that U is produced by a zeroth order mechanism with rate constant k0 and degraded by
a first order mechanism with rate constant k1. Clearly, the rate expression is,

d[U]
dt

= k0 − k1[U]
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b. To solve this problem, all we have to do is integrate the rate expression we derived in part a. The linear
differential equation

dy
dx

+ P (x)y = Q(x)

has the solution

y = e−
∫
P (x)dx

[∫
Q(x)e

∫
P (x)dxdx+ c

]
All we need to do is rearrange our rate expression from part a into the form,

d[U]
dt

+ k1[U] = k0

to see that y = [U], x = t, P (x) = k1, and Q(x) = k0. Then,

[U] =
(
e
−
∫ t

0
k1dt

)[∫ t

0

k0e

∫ k
0
k1dtdt+ c

]

[U] =
(
e−k1t+0

) [
k0

∫ t

0

ek1t+0dt+ c

]
[U] =

k0

k1
e−k1t

(
ek1t − 1 + c

)
=
k0

k1

(
1− e−k1t + c

)
but since [U(t = 0)] = 0, then c = 0, so

[U] =
k0

k1

(
1− e−k1t

)
If you want to take the easy way out, you can use the answer they give you, and take the derivative with
respect to time to see if it gives you the same answer; strictly speaking, you are only asked to verify the
answer, not derive it. But calculus is fun!
c. We are told that k0 = 1.00 nM s−1 and that t1/2 = 0.500 hr for the degradation reaction. We derived
earlier in this problem set that for a first order reaction, t1/2 = ( ln2)/k1, so

k1 =
ln2
t1/2

=
(

ln2
0.500 hr

)(
1 hr

3600 s

)
= 3.86× 10−4 s−1

We know from calculus that extrema occur when

d[U]
dt

= k0 − k1[U] = 0

which is particularly easy to rearrange, in order to find that the maximum concentration is

[U] =
k0

k1
=

1.00 nM s−1

3.86× 10−4 s−1
= 2.59× 103 nM = 2.59µM

When does it occur? Using the integrated rate expression for [U] we derived in part b,

ln
(

1− k1

k0
[U]
)

= −k1t

t = − 1
k1

ln
(

1− k1

k0
[U]
)

= − 1
3.86× 10−4 s−1

ln
[
1− 3.86× 10−4 s−1

1.00 nM s−1
(2.59× 103 nM)

]
= 2.13×104 s = 5.94 hr
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However, this is wrong; in fact, it is due to a round off error. If you think about it for a minute,

t =
−1
k

ln
(

1− k1

k0
[U]
)

=
−1
k

ln
(

1− k1

k0

k0

k1

)
=
−1
k

ln0 =∞

Therefore it takes an infinite time to reach the maximum concentration, because (and you’ll see this if you
graph it), [U] approaches the maximum asymtotically.
d. To reach [U] = 1.00µM, we simply do the same as in b,

t = − 1
k1

ln
(

1− k1

k0
[U]
)

= − 1
3.86× 10−4 s−1

ln
[
1− 3.86× 10−4 s−1

1.00 nM s−1
(1.00× 103 nM)

]
= 1.26×103 s = 0.351 hr

e. This calculation is exactly the same as d, but with k0 = 0.500 nM s−1, and it gives the solution t =
3830 s = 1.06 hr.
f. To find the smallest k0 that will reach the [U] = 1.00µM cut off necessary for cell replication, we need to
consider the limit as t→∞,

lim
t→∞

[U] =
k0

k1

(
1− e−k1∞

)
=
k0

k1

k0 = k1[U] = (3.86× 10−4s−1)(1.00× 103 nM) = 0.386 nM s−1
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